Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6140, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480785

RESUMEN

Morphometric allometry, the effect of size on morphological variation, has been of great interest for evolutionary biologist and is currently used in fields such as wildlife ecology to inform management and conservation. We assessed American alligator (Alligator mississippiensis) morphological static allometry across the Greater Everglades ecosystem in South Florida, United States using a robust dataset (~ 22 years) and investigated effects of sex, habitat, and sampling area on morphological relationships. Regression models showed very strong evidence of a linear relationship between variables explaining equal to or above 92% of the variation in the data. Most trait-size relationships (8 out of 11 assessed) showed hyperallometry (positive allometry) with slope deviations from isometry between 0.1 and 0.2 units while the other three relationships were isometric. Sampling area, type of habitat, and in a lesser extent sex influenced allometric coefficients (slope and intercept) across several relationships, likely as result of differing landscapes and ecosystem dynamic alterations and sexual dimorphism. We discuss our findings in terms of the biology of the species as well as the usefulness of our results in the context of ecosystem restoration and conservation of the species. Finally, we provide recommendations when using trait-length relationships to infer population nutritional-health condition and demographics.


Asunto(s)
Caimanes y Cocodrilos , Ecosistema , Animales , Animales Salvajes , Evolución Biológica , Florida , Estados Unidos , Masculino , Femenino
2.
PLoS One ; 18(2): e0282093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36827271

RESUMEN

Body condition is a measure of the health and fitness of an organism represented by available energy stores, typically fat. Direct measurements of fat are difficult to obtain non-invasively, thus body condition is usually estimated by calculating body condition indices (BCIs) using mass and length. The utility of BCIs is contingent on the relationship of BCIs and fat, thereby validation studies should be performed to select the best performing BCI before application in ecological investigations. We evaluated 11 BCIs in 883 Argentine black and white tegus (Salvator merianae) removed from their non-native range in South Florida, United States. Because the length-mass relationship in tegus is allometric, a segmented linear regression model was fit to the relationship between mass and length to define size classes. We evaluated percent, residual, and scaled fat and determined percent fat was the best measure of fat, because it was the least-associated with snout-vent length (SVL). We evaluated performance of BCIs with the full dataset and within size classes and identified Fulton's K as the best performing BCI for our sampled population, explaining up to 19% of the variation in fat content. Overall, we found that BCIs: 1) maintained relatively weak relationships with measures of fat and 2) splitting data into size classes reduced the strength of the relationship (i.e., bias) between percent fat and SVL but did not improve the performance of BCIs. We postulate that the weak performance of BCIs in our dataset was likely due to the weak association of fat with SVL, the body plan and life-history traits of tegus, and potentially inadequate accounting of available energy resources. We caution against assuming that BCIs are strong indicators of body condition across species and suggest that validation studies be implemented, or that alternative or complimentary measures of health or fitness should be considered.


Asunto(s)
Lagartos , Animales , Florida
3.
Sci Total Environ ; 857(Pt 1): 159274, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208758

RESUMEN

Spatially explicit ecological risk assessment (ERA) requires estimating the overlap between chemical and receptor distribution to evaluate the potential impacts of exposure on nontarget organisms. Pesticide use estimation at field level is prone to error due to inconsistencies between ground-reporting and geospatial data coverage; attempts to rectify these inconsistencies have been limited in approach and rarely scaled to multiple crop types. We built upon a previously developed Bayesian approach to combine multiple crop types for a probabilistic determination of field-crop assignments and to examine co-occurrence of critical vernal pool habitats and bifenthrin application within a 5-county area in California (Madera, Merced, Sacramento, San Joaquin, and Stanislaus counties). We incorporated a multi-scale repeated sampling approach with an area constraint to improve the delineation of field boundaries and better capture variability in crop assignments and rotation schemes. After comparing the accuracy of the spatial probabilistic approach to USDA Census of Agriculture crop acreage data, we found our approach allows more specificity in the combination of crop types represented by the potential application area and improves acreage estimates when compared to traditional deterministic approaches. In addition, our multi-scale sampling scheme improved estimates of bifenthrin acreage variability for co-occurrence analysis and allowed for estimates of crop rotations that were previously uncaptured. Our approach could be leveraged for more realistic, spatially resolved exposure and effects models both in and outside of California.


Asunto(s)
Plaguicidas , Plaguicidas/análisis , Teorema de Bayes , Agricultura , Ecosistema , California
4.
PLoS One ; 15(4): e0231104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32255794

RESUMEN

Over the last three decades corals have declined precipitously in the Florida Keys. Their population decline has prompted restoration effort. Yet, little effort has been invested in understanding the contemporary niche spaces of coral species, which could assist in prioritizing conservation habitats. We sought to predict the probability of occurrence of 23 coral species, including the critically endangered Acropora cervicornis, using observations at 985 sites from 2011-2015. We ran boosted regression trees to evaluate the relationship between the presence of these corals and eight potential environmental predictors: (i) bathymetry (m), (ii) mean of daily sea surface temperature (SST) (°C), (iii) variance of SST (°C), (iv) range of SST (°C), (v) chlorophyll-a concentration (mg m3), (vi) turbidity (m-1), (vii) wave energy (kJ m-2), and (viii) distance from coast (km). The Marquesas and the lower and upper Florida Keys were predicted to support the most suitable habitats for the 23 coral species examined. A. cervicornis had one of the smallest areas of suitable habitat, which was limited to the lower and upper Florida Keys, the Dry Tortugas, and nearshore Broward-Miami reefs. The best environmental predictors of site occupancy of A. cervicornis were SST range (4-5°C) and turbidity (K490 between 0.15-0.25 m-1). Historically A. cervicornis was reported in clear oligotrophic waters, although the present results find the coral species surviving in nearshore turbid conditions. Nearshore, turbid reefs may shade corals during high-temperature events, and therefore nearshore reefs in south Florida may become important refuges for corals as the ocean temperatures continue to increase.


Asunto(s)
Distribución Animal , Antozoos/fisiología , Arrecifes de Coral , Especies en Peligro de Extinción/estadística & datos numéricos , Restauración y Remediación Ambiental , Animales , Clorofila A/análisis , Especies en Peligro de Extinción/tendencias , Monitoreo del Ambiente/estadística & datos numéricos , Florida , Calor/efectos adversos , Agua de Mar/análisis , Agua de Mar/química
5.
Sci Total Environ ; 663: 465-478, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716638

RESUMEN

The protection of listed species through the Ecological Risk Assessment (ERA) process is encumbered by the number and diversity of species that need protection and the limited data available to inform assessments. Ecological communities within isolated ecosystems often contain a number of biologically diverse endemic, endangered, and threatened species, as well as providing numerous ecosystem services (ES). We propose an approach that develops community-level protection goals using isolated wetlands that includes both listed species and Service Providing Units (SPUs) that drive ES for ecological risk assessments (ERAs). Community-level protection goals are achieved by developing a protection community and weighing lines of evidence to determine a set of focal species within that community upon which to base the assessment. Lines of evidence include chemical mechanism of action, likely routes of exposure, and taxa susceptibility, as well as relationships among species, and other ecological factors. We demonstrate the process using case studies of chlorpyrifos in California vernal pools and coal ash effluent in Carolina bays. In the California vernal pool case study, listed species were the primary SPUs for the ES provided by the critical habitat. The weight of evidence demonstrated the honey bee as the focal species for the terrestrial environment and the vernal pool fairy shrimp as the focal species for the aquatic environment. The protection community within the Carolina bay case study was more taxonomically diverse than vernal pools for both listed species and SPUs, with amphibians identified as the focal species for which to target mitigation goals and hazard levels. The approach presented here will reduce the time and resource investment required for assessment of risk to listed species and adds an ES perspective to demonstrate value of assessments beyond listed species concerns.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Humedales , California
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA